Random Construction of Partial MDS Codes
نویسندگان
چکیده
This work deals with partial MDS (PMDS) codes, a special class of locally repairable codes, used for distributed storage system. We first show that a known construction of these codes, using Gabidulin codes, can be extended to use any maximum rank distance code. Then we define a standard form for the generator matrices of PMDS codes and use this form to give an algebraic description of PMDS generator matrices. This implies that over a sufficiently large finite field a randomly chosen generator matrix in PMDS standard form generates a PMDS code with high probability. This also provides sufficient conditions on the field size for the existence of PMDS codes.
منابع مشابه
Constacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملA Complete Classification of Partial-MDS (Maximally Recoverable) Codes with One Global Parity
Partial-MDS (PMDS) codes are a family of locally repairable codes, mainly used for distributed storage. They are defined to be able to correct any pattern of s additional erasures, after a given number of erasures per locality group have occurred. This makes them also maximally recoverable (MR) codes, another class of locally repairable codes. Both terms will be properly defined in the next sec...
متن کاملConstructions of MDS-convolutional codes
Maximum-distance separable (MDS) convolutional codes are characterized through the property that the free distance attains the generalized singleton bound. The existence of MDS convolutional codes was established by two of the authors by using methods from algebraic geometry. This correspondence provides an elementary construction of MDS convolutional codes for each rate k/n and each degree δ. ...
متن کاملConstruction of Unit-Memory MDS Convolutional Codes
Maximum-distance separable (MDS) convolutional codes form an optimal family of convolutional codes, the study of which is of great importance. There are very few general algebraic constructions of MDS convolutional codes. In this paper, we construct a large family of unit-memory MDS convolutional codes over Fq with flexible parameters. Compared with previous works, the field size q required to ...
متن کاملConstruction results for MDS-convolutional codes - International Symposium on Information Theory, 2000. Proceedings. IEEE
The generalized Singleton bound and MDS-convolutional codes are reviewed. For each n, k and 6 an elementary construction of rate k / n MDS convolutional codes of degree 6 is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.05848 شماره
صفحات -
تاریخ انتشار 2018